HARMONIC SUMS IN ARITHMETIC PROGRESSIONS
STEVE FAN

ABSTRACT. A well-known fact in elementary number theory states that the nth harmonic
number Y ;_; 1/k is not an integer if n > 2. More generally, one can show that the harmonic
sum > ;_1/kis not an integer if n > m > 1. In this expository note we discuss harmonic
sums in arithmetic progressions of the form Y, 1/(a+kd). More precisely, we shall follow a
paper of Paul Erdés [4] to prove that if a, d, n are positive integers, then the sum » ;' 1/(a+
kd) is never an integer. We shall also discuss a similar result concerning the arithmetic
properties of the generalized harmonic sum Zzzm 1/k%, where 0,,, 0,4 1...,0, are positive
integers. At the end of this note we point out a connection between the arithmetic properties
of harmonic sums and the distribution of primes as well as potential generalizations of
harmonic numbers.

1. INTRODUCTION

Throughout the paper, let R denote the field of real numbers, R, the set of positive real
numbers, Q the field of rational numbers, Z the set of integers, N, the set of positive integers,
N = N, U {0} the set of natural numbers, and P the set of prime numbers. For any = € R,
we denote by |[z] the integer part of x and by [z] the least integer greater than or equal to
x. For every n € N, the nth harmonic number is defined by

"1
Hn = Z E
k=1

Here H,, can be viewed as the nth partial sum of ((1), where ¢ is the Riemann zeta function

defined by
— 1
C(s)=) o
k=1

for s € C with R(s) > 1. More generally, one can define the generalized harmonic number

"1
Hpy, = ; T

A folklore fact in elementary number theory states that H, ¢ Z for all n > 2. This was
proved in 1915 by Taeisinger [15, p.1307]. The more general result that H,,, ¢ Z for all
n > m > 1 was proved by Kiirschék [15, p. 1307] three years later. Kiirschék’s result can be
proved easily by looking at the highest power of 2 dividing the denominators m,m+1, ..., n.
In 1932 Erdés [4], at age of 19, generalized Kiirschdk’s result to harmonic sums in which the
denominators of the terms form an arithmetic progression. In particular, he showed that for
arbitrary a,d,n € N, the sum

n

1
Za—i—kd

k=0
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is never an integer. This is one of the earliest mathematical discoveries he made in his career.

The main purpose of this paper is to present Erdos’ proof of his result in a modern
and cleaner way. We follow mostly his original argument but with slight modifications and
simplifications. The author hopes that an exposition of this kind will help make Erdés’ result
accessible to a wider audience in the math community, given that his original paper [4] was
written in Hungarian. Besides Erdos’ theorem, we shall discuss potential generalizations of
harmonic numbers which may be interesting for further study. In Section 2 we introduce the
basic lemmas needed for our proof of the main theorems. In Section 3 we prove Erdos’ result
in a slightly more general form. In Section 4 we prove a generalization of Kiirschak’s result
which is not included in Erdés’ theorem. In Section 5 we discuss the connection between
harmonic sums and the distribution of primes. Finally, we generalize H,, and H,,, to sums
in algebraic number fields.

2. ELEMENTARY LEMMAS

In this section, we prove some preliminary lemmas needed for the proof of Erdés’ theorem.
Lemmas 2.1 and 2.2 are explicitly stated and proved in [4]. Lemma 2.3 is a well-known result
in elementary number theory. Lemma 2.4 and its proof are due to the author.

Lemma 2.1 (Erdds, 1932). Let n,a € Ny. Then the binomial coefficient

(2: ) B Ei%)?!

is divisible by any prime p such that {/n < p < ¥/2n.

Proof. Let p € P be any prime in the interval ({/n, ¥/2n]. By Legendre’s formula, the
exponent of p in n! is given by
|
=1 LP

a—1
2n
2]
=1 LT
since |2n/p*| = 1. Consequently, the exponent of p in (*") is

(o[

since |2n/p*| > 2|n/p™]. This shows that (*") is divisible by p. O

n

and the exponent of p in (2n)! is

Lemma 2.2 (Erdés, 1932). Let n € N, and let m be the largest integer for which 2™ < n.
For each k=1,...,m, set

Then
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where the inner product is over all the primes not exceeding ¥/n.

Proof. Clearly, we have a1 > ay > ... > a,, = 1. Observe that

2n

:W+1§2ak+1+17

n
ak<ﬁ+1

n n
ak2ﬁ22(2k+1+1) —2>2ak+1—2.

Thus 2a511 — 1 < ap < 2ag41. Since 2a; > n, it follows that for any o € N,

m

(1, n) € U (amne /2004

k=1
Now let ¢ € P be any prime such that *“/n < ¢ < ¢/n, where 1 < a < m. Then the

exponent of ¢ in
II 11 »

k=1 p< f/n
equals a. Since 1 < ¢ < /n for any positive integer k < «, there exists a positive integer
s < m such that yas < ¢ < {/2a,,. Note that s; # s; when 1 <[ < k < m, since the

inequalities ¥/a, < q¢ < /2a, and Vas < ¢ < v/2as would imply

Hence

k=1 p< b/m k=1
Now we show that
(2
I1 ( ak) <4 (2.1)
Qp
k=1

Simple calculation shows that (2.1) holds for all n < 10. Suppose that (2.1) holds for all
integers r < n, where n > 10. We need to prove that it also holds for r = n. Take r = 2a,—1.
Since r < 2(n/4+1)—1=n/2+1<nand 2°"H(ap — 1) + 1 < ap < 28 Lag,, we have

2%(ap — 1) +1 < "T" _ {2@2—1-‘ _ Pap — 1

apr1 — 1 < +1<ap1+1

ok ok ok ok

for every 1 < k < m — 1. Hence [r/2*] = apy1 for every 1 < k < m — 1. Our inductive
hypothesis asserts that (2.1) holds with r = 2a; — 1. Thus we have

ﬁ (QCLk) < 42@2—1 (2&1)‘
o1 \ Ak a1
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It is not hard to show by induction that for u > 5,

2 1 2u— 2
(£) o) <o
U U u—1
Since 2a; < n+ 1 and 2a, < a; + 1, it follows from the above inequality that
H (2Clk) < 42a2—1+a1—1 < 42(11—1 < 47’L
ag - B
k=1
This completes the inductive proof of (2.1). O

Lemma 2.3. Let a,n € N, with a < n, and let x € R,. Denote by N(x;n,a) the number
of positive integers m < x for which m = a (mod n). Then

[z /n] if a> x| = z/n]n,

Nma) = { o/n]+1 ifa< [z - [z/n)n.

Proof. Given any m € 7Z, a set of n consecutive integers contains a unique element congruent
tom (mod n). Up to x there are k := [z/n]| complete sets of residues modulo n and possibly
a partial set given by

E(z;n) = {kn+1,kn+2, .. kn+ |z] — kn}.

Hence N(z;n,a) = k or k+1. It is clear that N(z;n,a) = k+1 if and only if a = m (mod n)
for some m € E(x;n), or equivalently, if and only if a < |z] — kn. O

Lemma 2.4. For any positive integer n > 2,

ﬁ (nz Ly 2) > 4m, (2.2)

k=1

Proof. Note that

UCSBIS(CE) (EESER (OF =S

k=1 k=1 k=1 k=1

Since n > 2 and k(n +1 — k) < (n + 1)?/4 with equality only when k& = (n + 1)/2, we have

ﬁ<n21+2) 2>ﬁ<4+%) = 47"

k=1 k=1

We obtain (2.2) by taking positive square root of both sides of the above inequality. U

3. HARMONIC SUMS IN ARITHMETIC PROGRESSIONS

Now we are ready to prove Erdds’ theorem on harmonic sums in arithmetic progressions.
We will see shortly that it follows easily from the following theorem formulated based on [4].
Theorem 3.1 (Erdds, 1932). Let a,d,n € N,.

(1) If d is odd, then there exists o € Ny such that 2¢ divides ezxactly one of a,a+d, ...,a+nd.
(2) If n > a, then there exists & € N such that 3% divides exactly one of a,a+2,...,a+ 2n.
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(8) Ifd=2 and a > n+1, orif d > 4, then there exist « € N, and p € P such that p* > n
divides exactly one of a,a+d,...,a + nd.

Proof. Without loss of generality, we may assume ged(a,d) = 1. Let us first prove (1). Let
a be the largest integer for which 2% divides at least one of a,a + d, ...,a + nd. Since d is
odd, either a or a + d is even. Thus a@ > 1. Let k < n be the smallest natural number such
that a + kd = 2%z, where zx is odd. If k¥’ < n were the second smallest natural number such
that a + k'd = 2%y with y odd, then 2> | (K’ — k). This implies ¥’ — k& > 2°*1. But then 2“
would divide a+ (k+2%)d with k+2% < k/, which contradicts the definition of k. Therefore,
no such &’ can exist. In other words, 2% divides precisely one of a,a +d, ..., a + nd.

The proof of (2) goes along the same lines with slight complications. Since the case
n = a = 1 is trivial, we may suppose that n > 2. Observe that a must be odd. As above, let
a be the largest integer for which 3% divides at least one of a,a + 2, ...,a + 2n. Since n > 2,
exactly one of a, a + 2, and a + 4 is divisible by 3, which implies & > 1. Let £ < n be the
smallest natural number for which 3% | (a + 2k). If " < n were the second smallest natural
number for which 3% | (a + 2k’), then 3% | (K’ — k). According to the definition of £/, we
would have k' = k 4 3%. We may write

a+ 2k = 3%,
a+ 2k =3%x+2),

where € N,. The assumption that ged(a,2) = 1 implies that z is odd. Moreover,
since 3°™! { (a + 2k) and 3*™' ¢ (a + 2k'), we must have z = 2 (mod 3) and =z > 5.
If £ > 3% then a + 2(k — 3%) = 3%z — 2) would be divisible by 3**!; if k& < 3% then
n>a>35—-2k=k+3%5—-3k>k+3%-2 and thus a + 2(k + 3% - 2) = 3%(x + 4)
would be divisible by 3**!. In either case, we would derive a contradiction. Therefore, 3%
divides exactly one of a,a + 2, ...;a + 2n.

It remains to prove (3). If d = 2, then a and a + 2 are both odd and relatively prime
to each other, since ged(a,2) = 1. Thus every prime factor p > 2 of a 4+ 2 does not divide
a. This verifies the case (d,n) = (2,1). Suppose now that (d,n) # (2,1). Let m be
the largest integer for which 2™ < n. If there were no prime power p® > n dividing at
least one of a + d,a + 2d, ...,a + nd, then for any p € P such that */n < p < /n with
1 < k < m, one would have p**1 | (a + Id) for all 1 <1 < n. By Lemma 2.3, the congruence
a+ xd = 0 (mod p°) has at most |n/p®| + 1 solutions for 1 < x < n, where s > 1. Since
p**1 > n, the exponent v, of p in (a + d)(a + 2d) - - - (a + nd) satisfies

<2 ()

Since the exponent of p in n! equals Zle |n/p*|, it follows that p would divide the reduced

form of
(a+d)(a+2d)---(a+nd)

n!

to a power no greater than

k
n

w3 | <

s=1



6 STEVE FAN

Hence we have

(a+d)(a+2d)---(a+nd) R
n! H B H b
k=1 +Fy/n<p< i/ k=1p<t/n
Ifd=2,n2>2,and a > n+ 1, then it follows from Lemma 2.4 that

(a+2)(a+i)! -(a+2n) ﬁ[( +2) ﬁ(n+1+2)>4"

if d > 4, then
(a+d)(a+2d)---(a+nd) :H

n!

- a
—4d | >d" >4
T(f+a)>r=

k=1

In both cases, we would have

QIR

k=1 p<t/n
which contradicts Lemma 2.2. We have proved that there must exist a prime power p® > n
dividing at least one of a + d,a + 2d, ...,a + nd. To finish the proof of (3), we need to show
that such a prime power necessarily divides only one of a,a + d,...,a + nd. To this end,
suppose that p® > n divides at least one of a + d,a + 2d, ...,a + nd. Since ged(a,d) =1, we
have ged(d,p) = 1. If 0 < k, k' < n were two distinct integers such that a + kd and a + k'd
are both divisible by p®, then p* | (k — k') and thus |k — k| > p®. But this is impossible,
since we have |k — k'| < n < p®. Therefore, we conclude that p* divides precisely one of
a,a+d,...,a+ nd. O

Now it is an easy matter to show that for arbitrary a,d,n € Ny, the sum )", 1/(a+ kd)
is never an integer. In fact, we have the following more general theorem [4].

Theorem 3.2 (Erdés, 1932). Leta,d, 0 € Ny andm,n € N withn > m. Ifay,, ani, ..., an €
Z are integers such that ged(ag, a + kd) =1 for all m < k <n, then the sum

2 (a+ k)

18 mever an integer.

Proof. Let b := a+ md. In view of Theorem 3.1, there exist a € N, and p € P such that p®
divides exactly one of b,b+d,...,b+ (n —m)d. Since ged(ax,a + kd) =1 for all m < k <n,
we may write

n

Z ay _brty
= (a+kd)?  p'oz ’

where z € N} and x,y € Z with ged(y,p) = 1. Clearly, the number on the right-hand side
cannot be an integer. 0]
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4. THE GENERALIZED HARMONIC SUM

In this short section, we discuss a simple result of the same nature concerning the gen-
eralized harmonic sum )", _ 1/ k% where 0,,,0,,11,...,0, € N.. We shall give a proof of
this result similar to that of Theorem 3.2. In particular, we need a substitute for Theorem
3.1. In the proof, we shall use Bertrand’s postulate which asserts that for any n € N, there
exists a prime n < p < 2n. This result is sometimes referred to as Chebyshev’s theorem for
the reason that Chebyshev [3] provided the first complete proof of it. For a modern proof of
Bertrand’s postulate, see [7, Theorem 418]. We shall also need a generalization of Bertrand’s
postulate due to Sylvester [14], which states that for any n, k € N, with n > 2k, there exists
a prime p > k dividing precisely one of the numbers n — k + 1,n — k + 2,...,n. Bertrand’s
postulate is clearly a special case of Sylvester’s theorem with n = 2k. The interested reader
is referred to [5] for an elementary proof of Sylvester’s theorem due to Erdds.

Theorem 4.1. Let n > m > 1 be positive integers. If U, i1, ..., 0, € No, and if
Ay Qg 1y -y G, € 7 are integers such that ged(ag, k) =1 for allm < k <n, then

n
Qg

Tr

k=m

18 mever an integer.

Proof. If m < [n/2], it follows from Bertrand’s postulate that there exists ¢ € P with
n/2 < q < n. Since n < 2¢ and m < ¢, we have ged(k,q) = 1 for all m < k < n except
for k = q. If m > [n/2] + 1, then n > 2(n — m + 1). By Sylvester’s theorem, there exists
a prime ¢’ > n —m + 1 such that ¢’ divides exactly one of m,m + 1,...,n. In either case,
there exists p € P dividing exactly one of m,m + 1,...,n, denoted by [. As in the proof of
Theorem 3.2, we may write

@ _prty
k=m kjﬂk N pﬁlz ’
where z € N, and z,y € Z with ged(y, p) = 1. Hence, this sum is never an integer. O

5. HARMONIC SUMS AND THE DISTRIBUTION OF PRIMES

Let f € Z[z] be a polynomial of degree at least 1 with integer coefficients such that 0 ¢
f(Ny). One may look for sufficient conditions under which it is true that > ;_, ax/(f(k))% ¢
Z, where ay,...,a, € 7Z are integers such that ged(ag, f(k)) = 1 for all 1 < k& < n
and 6y,...,0, € N, are arbitrary positive integers. Theorems 3.2 and 4.1 assert that
Se_iax/f(k) ¢ Z if f is the power of a linear polynomial with non-negative integer co-
efficients. If f is a polynomial of degree at least 2 with non-negative integer coefficients,
then it is easy to see that > ,_, 1/(f(k))% ¢ Z for all n > 1. Indeed, we have f(k) > k? for
all £ > 1, which implies

1
1<Z Ty = Zk2<1+zk F—1) _ﬁ<2'

In this case we do not need to know anything about the arithmetic properties of the sequence
{f(k)}r>1. The general case is tricky. Note that if f(z) can take negative values, then it is
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not necessarily true in general that Y ,_ 1/f(k) ¢ Z. For instance, consider the case where
n =2 and f(r) = 2x — 3. As we saw above, the distribution of primes and prime powers in
arithmetic progressions plays an essential role in the proofs of these two theorems. The idea is
that if one can show that there exists a prime power p® dividing precisely one of f(1), ..., f(n),
then >°p_, ax/(f(k))? & Z, where 6 € N,. Similarly, if one can prove that there exists a
unique prime ¢ € P dividing precisely one of f(1),..., f(n), then >3 ar/(f(k))% ¢ Z.
Formally, let P(k) denote the largest prime factor of k for every k € Z \ {0,£1} and set

P(£1) := 1. Define
Pyn) = P (H f(k)> .

If f(x) = a4+ d(x — 1) is a linear polynomial with d # 0 and gecd(a,d) = 1, and if
Ps(n) > max(n — 1,|d|), then Py(n) divides precisely one of f(1),..., f(n), and hence
S ap/(f(k))% ¢ Z. Sylvester [14] proved that if a,d,n > 1, then P;(n) > n when-
ever a > d+n. Langevin [10] replaced the assumption a > d+n by a > n. Later Shorey and
Tijdeman [13] showed that Py(n) > nforalla > 1,d > 2, and n > 3 but (a,d,n) = (2,7, 3).
From this result it follows immediately that Y ,_, ax/(f(k))% ¢ Z whenever a > 1 and
n>d>2.

For the general case, Nagell [12] showed that if f € Z[x] is not a product of linear factors
in Z[z], then Pr(n) > ¢inlogn for some constant ¢; = ¢;(f) > 0. Erdds [6] improved this
result by showing that under the same assumption, the inequality

Pf(”) > n(log n)cz log log logn

holds for some ¢y = c5(f) > 0. As an application, let f(z) = az® + bx + ¢ € Z[z] be an
irreducible quadratic polynomial with ab > 0. By Nagell’s theorem, there exists N = N(f) €
N such that Ps(n) > (2n — 1)|a| + |b| for all n > N. Note that if f(k) = f(I) (mod p) for
some 1 < k <[ < n, where p € P is any prime, then 0 < |a(k + 1) + b] < (2n — 1)|a| + |0]
and p | [a(k + 1) 4+ b]. It follows that P(n) divides precisely one of f(1),..., f(n) whenever
n > N. This implies that >, ar/(f(k))% ¢ Z for all sufficiently large n. It is clear that
lower bounds of higher orders for Py(n) will allow us to handle the sum >} ax/(f(k))%
when deg f > 2.

There is no doubt that we can say more about general harmonic sums if we are able to
gain a better understanding of the distribution of primes in polynomial sequences. Given an
irreducible polynomial f € Z[x] of degree at least 1 with a positive leading coefficient, one
may wonder how frequently f hits primes as n varies. One of the most famous conjectures
concerning the the distribution of primes in polynomial sequences is the following conjecture
proposed by Paul T. Bateman and Roger A. Horn [2].

Conjecture 5.1 (Bateman-Horn, 1962). Let fi,..., fi € Z[t] be distinct non-constant irre-
ducible polynomials with positive leading coefficients, and let f := Hle fi- Define
7(x; f1, .o fr) = F#{n < z: fi(n) is a prime for every 1 < i < k}.

Suppose that f does not reduce to 0 modulo p for any prime p. Denote by w,(f) the number
of roots of f in Z/pZ. Then

| Lo [t
(x5 f1, s f) Hf:l degfi/2 (logt)+’
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n-Te-3) (- )

As a simple example, consider the linear polynomail f(t) = a + qt, where a € Z and
q € Ny with ged(a,q) = 1. Then f is irreducible over Z. Moreover, we have w,(f) = 1 if
p1qand wy(f) =0if p| ¢ Thus we have

w-T(-}) =5

plg

where

where ¢ is Euler’s totient function. Since

/(“Vq dt (x—a)/q 1z 1 [® dt
2

logt  log((x —a)/q) q logz ¢/, logt’
as r — 00, the Bateman-Horn conjecture, if true, would imply
1 xT
(aig.0) = #lp <2 p = (mod )} = wl(@ —a)fesf) ~ = |
2

This is the prime number theorem for arithmetic progressions. Similarly, one can show, by
taking fi(t) =t and fo(t) = t + 2, that the Bateman-Horn conjecture, if true, would imply

dt
(logt)?’

dt
logt

mo(z) == #{p < x: p and p + 2 are both primes} ~ 202/
2

where

1

g (p—1)2
This is the twin prime conjecture of Hardy and Littlewood. It is worth noting that the series
which defines the Bateman-Horn constant C'(f) always converges and hence C(f) > 0. For a
proof of this (highly nontrivial) fact and more on the Bateman-Horn conjecture as well as its
far-reaching implications in number theory, see [1]. The only known case of the conjecture
is the case where k = 1 and deg f; = 1, which is equivalent to the prime number theorem
for arithmetic progressions, as we saw above. We don’t even know if the polynomial #? + 1
takes prime values infinitely often, though Iwaniec [8] showed that there are infinitely many
n € N for which n? + 1 has at most two prime factors.

Now we discuss the general harmonic sum > ,_; ai/(f(k))% ¢ Z assuming the Bateman-
Horn conjecture. Let f(z) =Y " a,2" € Z[z] be an irreducible polynomial of degree m > 1
with a,, > 0 and a,, > 0 for all 1 <r < m. The Bateman-Horn conjecture implies that there
exists a constant c3 = c3(f) > 0 such that

m(n; f) —w(n/2; f) > c3

n
logn
holds for all sufficiently large n. Since f(z) is strictly increasing when n is sufficiently large,
it follows that Pr(n) > f(n/2) for all sufficiently large n. Note that if f(k) = f(I) (mod p)
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for some 1 < k < <n, where p € P is any prime, then p divides

m r—1
§ a, k,slr—l—s7
s=0

r=1

which is positive and bounded above by

m

g a,rn" L.

r=1

This implies that

m
p < E a,rn" L.
r=1

Of course for sufficiently large n, we have

m

Ps(n) > f(n/2) > Zaﬂ’n"*l.

r=1

Thus if n is sufficiently large, then Pf(n) divides precisely one of f(1),..., f(n). We can
conclude that if the Bateman-Horn conjecture is true, then Y. ax/(f(k))% ¢ Z for all
sufficiently large n.

6. HARMONIC SUMS IN ALGEBRAIC NUMBER FIELDS

Let K be an algebraic number field and denote by O the ring of integers of K. One can
define the nth harmonic number H, (K) of K by

H,(K) = Z %

b
11l<n

where I ranges through all the non-zero ideals of O with absolute norm ||| := [Ok : ]
not exceeding n. Here H,(K) can be viewed as the nth partial sum of (x (1), where (x is
the Dedekind zeta function of K defined by

1
)= 2 T

0£ICOK

for s € C with £(s) > 1. In the case K = Q, every non-zero ideal I C Og = Z is a principal
ideal of the form (k) for some k € N;. Thus we have

1 "1

keN4

(k) [[<n
This provides a way of generalizing H,, to sums in general number fields. More generally, we
may define the generalized harmonic number H,,(K) of K by

ar

Hm,n(Ka a, 9) = Z W’
0£ICOK
m<| ]| <n
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where 8 = {0;},,<1<» With each 0; € N, and a = {a}n<|rj<n With each a; € Z satisfying
ged(ayg, ||I]]) = 1. The following example illustrates H,,(K) for K = Q(i), where i = /—1 is
the imaginary unit.

Example 6.1. Let K = Q(i). Then Ok = Z[i] is a PID. Note that ||(a)|| = [Nk/g(«)| for all
a € K\ {0} and that (o) = (f) implies a = uf for some unit u € {£1,+i}. So we have

1 1 1~ra(k)
H(K)=7 2 a2+b2_4]; ko

a,beZ
1<a?4b%2<n

where r5(k) denotes the number of ways of writing k as a sum of two squares of integers, i.e.,
ro(k) := #{(a,b) € Z*: a®> + b* = k}.
To see how H,(K) grows as n increases, we define
r(z) = Zm(kz)
k<z

for x > 1. A classical result in number theory states that r(x) = 7z + O(y/x) [7, Theorem
339]. By partial summation we obtain

r(n) 1 ["r(t) T c .
H(K)=——"~+- [ —‘dt=-1 - /2
n(K) n —1—4/1 v dt 1 ogn+4+0(n ),

where

r(t) —wt
= ———dt.
c 7T+/1 "

It is easy to show that H,(K) ¢ Z for all n > 2. To see this, let m € N, be the largest
integer for which 2™ < n. By [7, Theorem 278], we have ro(k) = 46(k) with §(k) € N and
d(2™) = 1. Writing

—~ (k)
ALED
k=1
5(k)#0
we see that 2™ divides precisely one of the denominators of the terms in the sum on the
right side. This implies that H, (K) ¢ Z.

It is well known that O is a Dedekind domain so that every non-zero ideal I C Ok has
a unique representation as a product of prime ideals of Ok [11, Theorem 16]. In this setting
prime numbers are replaced by prime ideals and the prime number theorem is replaced by
the following more general theorem due to Landau [9].

Theorem 6.1 (Prime Ideal Theorem). Let K be an algebraic number field and denote by
Ok the ring of integers of K. Define
i (x) = #{I C O is prime: ||I|| < z}.

Then
Todt

7k (x) ~ Li(x) = . Togt
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As an application of Theorem 6.1, we show that if K = Q(i) and 1 < a; < ||1]|% /2 for all
prime ideals I C Ok with 2 < ||I|| < n, then Hy,(K;a,0) ¢ Z for all sufficiently large n.
As in the preceding section, we see that Theorem 6.1 implies that for all sufficiently large
n, there exists a prime ideal P C O such that 2 < n/2 < ||P|| < n. By [7, Theorem 252],
we have either P = («) for some o € Ok such that Ng,g(a) = p € P is congruent to 1
modulo 4, or P = (q) for some ¢ € P congruent to 3 modulo 4. In the former case, we have
n/2 < ||P||=p <n. Ifp| ||I| for some non-zero ideal I C Ok with ||I|| < n, then ||I| = p.
This implies that [ is a prime ideal with ||I|| = p. By [7, Theorem 252], this is possible if
and only if [ = P or [ = P, where P := (&) with & being the complex conjugate of a.. So
we may write

0p . 0p

Hyn(Ksa,0) = P TOPP 5~ A
g 2o i
1<[{][<n
and note that p { ||I|| for all non-zero I # P, P with ||I|| < n. If 0p # 0p, then the first
term on the right side of the above equality is in its reduced form with denominator divisible
by p. If 0p = 0p = 0, then 2 < ap + ap < p? and so p’ { (ap + ap). It follows that p
divides the denominator of the reduced form of (ap + ap)/p’. Hence H, ,(K;a,0) ¢ 7Z for
all sufficiently large n. Suppose now that P = (¢q). Then n/2 < ||P|| = ¢* < n. If ¢ | ||I| for
some non-zero ideal I C Ok with ||| < n, then I has a prime factor @ for which ¢ | ||Q||.
Since ¢ = 3 (mod 4), it follows that Q = P and so | P|| = ¢ | ||I||. This implies that I = P,
since 2¢* > n > ||I||. Hence ¢ divides precisely one of the members of {||I||}1<)r<n. As

before, we conclude that H,(K;a,0) ¢ Z for all sufficiently large n.

Note that in the above argument, one may resort to the prime number theorem for arith-
metic progressions instead of Theorem 6.1. Besides, there is no difficulty adapting the argu-
ment to handle the general quadratic field K = @(\/E), where d € 7Z is square-free. Indeed,
for sufficiently large n there exists a prime ideal P C O such that 2 < n/2 < ||P|| < n. By
a well known result [11, Theorem 25] on splitting of primes in quadratic number fields, we
know that either || P|| = p for some odd p € P such that d is a square modulo p, or ||P|| = ¢*
for some odd g € P such that d is not a square modulo q. The rest of the argument remains
the same. However, new methods may be needed for achieving full generality.

Acknowledgment. The author is grateful to Prof. Carl Pomerance for providing insightful
comments and pointing out a typo in the proof of Theorem 3.2.
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